Lecture 02-1: Challenges in Wireless Networks

CS 356R Intro to Wireless Networks

Mikyung Han

Please, interrupt and ask questions AT ANY TIME !

Why go Wireless?

• No need to install or maintain wires

- Reduce costs in offices, hotels,
- Simplifies deployment (eg. Hotspots)
- Last mile problem: Wireless Mesh vs wire

• Can support mobility

- Users can move around office, city, airplane (continuous connection)
- $_{\circ}$ Cordless phones
- Remote control (TV remote, garage opener)
- WiFi and Cellular
- o Bluetooth, RFID, etc

What is Hard about Wireless?

• In wired network links are constant, reliable and physically isolated

• No wires means none of that!

- Link properties are extremely dynamic
- Wireless links are error prone
- $_{\circ}$ More links in the system == more interference
- Interference can come from outside the network

Wireless is a shared medium while wire is an isolated one

• Wire: signals are contained in a conductor (copper or fiber)

Guides energy to destination
 Protects signal from external signals

- Wireless: signals are broadcasted over shared medium
 - $_{\circ}$ Energy is distributed in space
 - Signal must compete with many other signals in same frequency band

Wireless has far greater attenuation and errors than wired

• Wired

o Bit errors are 10⁻¹⁰ or less
o Fiber has 1dB per km attenuation
o -20 dBm tx → -21 dBm rx

• Wireless

 $_{\circ}\,$ Far from that

• Wifi has 100 dB per km attenuation

∘ -20 dBm tx → -120 dBm

WiFi free space attenuation

https://semfionetworks.com/blog/freespace-path-loss-diagrams/

WiFi attenuation with a wall

https://semfionetworks.com/blog/freespace-path-loss-diagrams/

Wireless signal

- Attenuates with distance
- Affected by noise and interference from competing signals
- Obstacles further attenuate the signal
- Probability of a successful reception depends on SINR

o "signal to interference and noise ratio"

How to increase network capacity?

• Wire: add more links

- Wireless: adding more links increase interference
 - Frequency reuse can help (subject to spatial limitation)
 Use different frequencies (subject to frequency limitation)

Network capacity in wireless network is fundamentally limited

Mobility affects link throughput

 Quality of the transmission depends on distance and obstacles blocking "line of sight"

• "slow fading": channel changes slower than transmitted signal

 Reflections off obstacles combined with mobility can cause rapid change in signal

 "fast fading": channel changes rapidly within a symbol

Hard to predict signal!

Bob

Wireless channel suffers from multipath

Wireless channel suffers from multipath fading

Multipath fading

Wire vs Wireless

Wire

- Physical link properties are fixed and specified in standards
- Designed for low error rates and throughput is fixed and known
- Link layer is simple and optimized for the physical layer
- Internet was designed assuming low error rates

Wireless

- Physical link properties can change rapidly in unpredictable ways
- Error rates vary a lot and throughput is very dynamic
- How do you design an efficient link layer protocol?
- How well will higher layer protocols work?

What does this all mean?

 Wireless link layer protocols must optimize throughput across an unknown and dynamic transmission medium

 Important to understand what causes the changes

• Wireless "links" as observed by layers 3+ will be unavoidably different from wired links

- Variable bandwidth and latency
- Intermittent connectivity
- Must adapt to changes in connectivity and bandwidth
- Design question: Wireless-aware layer 3+ protocols?

Understanding the physical layer is the key to making wireless networks work well

Any questions regarding the course?

Backup Slides

Ways to combat challenges in wireless channel

- Modulation: sends digital data in a signal format that sends as many bits as
 possible for the current wireless channel
- Channel coding or error control coding: adds extra bits to a signal so that error can be detected and corrected
- Adaptive modulation and coding: dynamically adjusts the modulation and coding to current channel condition
- Equalization: conteracts multipath effects
- Multiple-input multiple-output (MIMO): leveraging multiple antennas to point signals strongly in certain directions, send simultaneous signals in multiple directions or send parallel streams of data
- Direct sequence spread spectrum ...
- OFDM ...

Acknowledgement

Slides adopted from Dr. Peter Steenkiste, CMU